Building a minimal plugin architecture in Python

I have an application, written in Python, which is used by a fairly technical audience (scientists).

I’m looking for a good way to make the application extensible by the users, i.e. a scripting/plugin architecture.

I am looking for something extremely lightweight. Most scripts, or plugins, are not going to be developed and distributed by a third-party and installed, but are going to be something whipped up by a user in a few minutes to automate a repeating task, add support for a file format, etc. So plugins should have the absolute minimum boilerplate code, and require no ‘installation’ other than copying to a folder (so something like setuptools entry points, or the Zope plugin architecture seems like too much.)

Are there any systems like this already out there, or any projects that implement a similar scheme that I should look at for ideas / inspiration?

Answers:

Thank you for visiting the Q&A section on Magenaut. Please note that all the answers may not help you solve the issue immediately. So please treat them as advisements. If you found the post helpful (or not), leave a comment & I’ll get back to you as soon as possible.

Method 1

Mine is, basically, a directory called “plugins” which the main app can poll and then use imp.load_module to pick up files, look for a well-known entry point possibly with module-level config params, and go from there. I use file-monitoring stuff for a certain amount of dynamism in which plugins are active, but that’s a nice-to-have.

Of course, any requirement that comes along saying “I don’t need [big, complicated thing] X; I just want something lightweight” runs the risk of re-implementing X one discovered requirement at a time. But that’s not to say you can’t have some fun doing it anyway 🙂

Method 2

module_example.py:

def plugin_main(*args, **kwargs):
    print args, kwargs

loader.py:

def load_plugin(name):
    mod = __import__("module_%s" % name)
    return mod

def call_plugin(name, *args, **kwargs):
    plugin = load_plugin(name)
    plugin.plugin_main(*args, **kwargs)

call_plugin("example", 1234)

It’s certainly “minimal”, it has absolutely no error checking, probably countless security problems, it’s not very flexible – but it should show you how simple a plugin system in Python can be..

You probably want to look into the imp module too, although you can do a lot with just __import__, os.listdir and some string manipulation.

Method 3

Have a look at at this overview over existing plugin frameworks / libraries, it is a good starting point. I quite like yapsy, but it depends on your use-case.

Method 4

While that question is really interesting, I think it’s fairly hard to answer, without more details. What sort of application is this? Does it have a GUI? Is it a command-line tool? A set of scripts? A program with an unique entry point, etc…

Given the little information I have, I will answer in a very generic manner.

What means do you have to add plugins?

  • You will probably have to add a configuration file, which will list the paths/directories to load.
  • Another way would be to say “any files in that plugin/ directory will be loaded”, but it has the inconvenient to require your users to move around files.
  • A last, intermediate option would be to require all plugins to be in the same plugin/ folder, and then to active/deactivate them using relative paths in a config file.

On a pure code/design practice, you’ll have to determine clearly what behavior/specific actions you want your users to extend. Identify the common entry point/a set of functionalities that will always be overridden, and determine groups within these actions. Once this is done, it should be easy to extend your application,

Example using hooks, inspired from MediaWiki (PHP, but does language really matters?):

import hooks

# In your core code, on key points, you allow user to run actions:
def compute(...):
    try:
        hooks.runHook(hooks.registered.beforeCompute)
    except hooks.hookException:
        print('Error while executing plugin')

    # [compute main code] ...

    try:
        hooks.runHook(hooks.registered.afterCompute)
    except hooks.hookException:
        print('Error while executing plugin')

# The idea is to insert possibilities for users to extend the behavior 
# where it matters.
# If you need to, pass context parameters to runHook. Remember that
# runHook can be defined as a runHook(*args, **kwargs) function, not
# requiring you to define a common interface for *all* hooks. Quite flexible :)

# --------------------

# And in the plugin code:
# [...] plugin magic
def doStuff():
    # ....
# and register the functionalities in hooks

# doStuff will be called at the end of each core.compute() call
hooks.registered.afterCompute.append(doStuff)

Another example, inspired from mercurial. Here, extensions only add commands to the hg commandline executable, extending the behavior.

def doStuff(ui, repo, *args, **kwargs):
    # when called, a extension function always receives:
    # * an ui object (user interface, prints, warnings, etc)
    # * a repository object (main object from which most operations are doable)
    # * command-line arguments that were not used by the core program

    doMoreMagicStuff()
    obj = maybeCreateSomeObjects()

# each extension defines a commands dictionary in the main extension file
commands = { 'newcommand': doStuff }

For both approaches, you might need common initialize and finalize for your extension.
You can either use a common interface that all your extension will have to implement (fits better with second approach; mercurial uses a reposetup(ui, repo) that is called for all extension), or use a hook-kind of approach, with a hooks.setup hook.

But again, if you want more useful answers, you’ll have to narrow down your question 😉

Method 5

Marty Allchin’s simple plugin framework is the base I use for my own needs. I really recommand to take a look at it, I think it is really a good start if you want something simple and easily hackable. You can find it also as a Django Snippets.

Method 6

I am a retired biologist who dealt with digital micrograqphs and found himself having to write an image processing and analysis package (not technically a library) to run on an SGi machine. I wrote the code in C and used Tcl for the scripting language. The GUI, such as it was, was done using Tk. The commands that appeared in Tcl were of the form “extensionName commandName arg0 arg1 … param0 param1 …”, that is, simple space-separated words and numbers. When Tcl saw the “extensionName” substring, control was passed to the C package. That in turn ran the command through a lexer/parser (done in lex/yacc) and then called C routines as necessary.

The commands to operate the package could be run one by one via a window in the GUI, but batch jobs were done by editing text files which were valid Tcl scripts; you’d pick the template that did the kind of file-level operation you wanted to do and then edit a copy to contain the actual directory and file names plus the package commands. It worked like a charm. Until …

1) The world turned to PCs and 2) the scripts got longer than about 500 lines, when Tcl’s iffy organizational capabilities started to become a real inconvenience. Time passed …

I retired, Python got invented, and it looked like the perfect successor to Tcl. Now, I have never done the port, because I have never faced up to the challenges of compiling (pretty big) C programs on a PC, extending Python with a C package, and doing GUIs in Python/Gt?/Tk?/??. However, the old idea of having editable template scripts seems still workable. Also, it should not be too great a burden to enter package commands in a native Python form, e.g.:

packageName.command( arg0, arg1, …, param0, param1, …)

A few extra dots, parens, and commas, but those aren’t showstoppers.

I remember seeing that someone has done versions of lex and yacc in Python (try: http://www.dabeaz.com/ply/), so if those are still needed, they’re around.

The point of this rambling is that it has seemed to me that Python itself IS the desired “lightweight” front end usable by scientists. I’m curious to know why you think that it is not, and I mean that seriously.


added later: The application gedit anticipates plugins being added and their site has about the clearest explanation of a simple plugin procedure I’ve found in a few minutes of looking around. Try:

https://wiki.gnome.org/Apps/Gedit/PythonPluginHowToOld

I’d still like to understand your question better. I am unclear whether you 1) want scientists to be able to use your (Python) application quite simply in various ways or 2) want to allow the scientists to add new capabilities to your application. Choice #1 is the situation we faced with the images and that led us to use generic scripts which we modified to suit the need of the moment. Is it Choice #2 which leads you to the idea of plugins, or is it some aspect of your application that makes issuing commands to it impracticable?

Method 7

When i searching for Python Decorators, found a simple but useful code snippet. It may not fit in your needs but very inspiring.

Scipy Advanced Python#Plugin Registration System

class TextProcessor(object):
    PLUGINS = []

    def process(self, text, plugins=()):
        if plugins is ():
            for plugin in self.PLUGINS:
                text = plugin().process(text)
        else:
            for plugin in plugins:
                text = plugin().process(text)
        return text

    @classmethod
    def plugin(cls, plugin):
        cls.PLUGINS.append(plugin)
        return plugin


@TextProcessor.plugin
class CleanMarkdownBolds(object):
    def process(self, text):
        return text.replace('**', '')

Usage:

processor = TextProcessor()
processed = processor.process(text="**foo bar**", plugins=(CleanMarkdownBolds, ))
processed = processor.process(text="**foo bar**")

Method 8

I enjoyed the nice discussion on different plugin architectures given by Dr Andre Roberge at Pycon 2009. He gives a good overview of different ways of implementing plugins, starting from something really simple.

Its available as a podcast (second part following an explanation of monkey-patching) accompanied by a series of six blog entries.

I recommend giving it a quick listen before you make a decision.

Method 9

I arrived here looking for a minimal plugin architecture, and found a lot of things that all seemed like overkill to me. So, I’ve implemented Super Simple Python Plugins. To use it, you create one or more directories and drop a special __init__.py file in each one. Importing those directories will cause all other Python files to be loaded as submodules, and their name(s) will be placed in the __all__ list. Then it’s up to you to validate/initialize/register those modules. There’s an example in the README file.

Method 10

Actually setuptools works with a “plugins directory”, as the following example taken from the project’s documentation:
http://peak.telecommunity.com/DevCenter/PkgResources#locating-plugins

Example usage:

plugin_dirs = ['foo/plugins'] + sys.path
env = Environment(plugin_dirs)
distributions, errors = working_set.find_plugins(env)
map(working_set.add, distributions)  # add plugins+libs to sys.path
print("Couldn't load plugins due to: %s" % errors)

In the long run, setuptools is a much safer choice since it can load plugins without conflicts or missing requirements.

Another benefit is that the plugins themselves can be extended using the same mechanism, without the original applications having to care about it.

Method 11

Expanding on the @edomaur’s answer may I suggest taking a look at simple_plugins (shameless plug), which is a simple plugin framework inspired by the work of Marty Alchin.

A short usage example based on the project’s README:

# All plugin info
>>> BaseHttpResponse.plugins.keys()
['valid_ids', 'instances_sorted_by_id', 'id_to_class', 'instances',
 'classes', 'class_to_id', 'id_to_instance']

# Plugin info can be accessed using either dict...
>>> BaseHttpResponse.plugins['valid_ids']
set([304, 400, 404, 200, 301])

# ... or object notation
>>> BaseHttpResponse.plugins.valid_ids
set([304, 400, 404, 200, 301])

>>> BaseHttpResponse.plugins.classes
set([<class '__main__.NotFound'>, <class '__main__.OK'>,
     <class '__main__.NotModified'>, <class '__main__.BadRequest'>,
     <class '__main__.MovedPermanently'>])

>>> BaseHttpResponse.plugins.id_to_class[200]
<class '__main__.OK'>

>>> BaseHttpResponse.plugins.id_to_instance[200]
<OK: 200>

>>> BaseHttpResponse.plugins.instances_sorted_by_id
[<OK: 200>, <MovedPermanently: 301>, <NotModified: 304>, <BadRequest: 400>, <NotFound: 404>]

# Coerce the passed value into the right instance
>>> BaseHttpResponse.coerce(200)
<OK: 200>

Method 12

As one another approach to plugin system, You may check Extend Me project.

For example, let’s define simple class and its extension

# Define base class for extensions (mount point)
class MyCoolClass(Extensible):
    my_attr_1 = 25
    def my_method1(self, arg1):
        print('Hello, %s' % arg1)

# Define extension, which implements some aditional logic
# or modifies existing logic of base class (MyCoolClass)
# Also any extension class maby be placed in any module You like,
# It just needs to be imported at start of app
class MyCoolClassExtension1(MyCoolClass):
    def my_method1(self, arg1):
        super(MyCoolClassExtension1, self).my_method1(arg1.upper())

    def my_method2(self, arg1):
        print("Good by, %s" % arg1)

And try to use it:

>>> my_cool_obj = MyCoolClass()
>>> print(my_cool_obj.my_attr_1)
25
>>> my_cool_obj.my_method1('World')
Hello, WORLD
>>> my_cool_obj.my_method2('World')
Good by, World

And show what is hidden behind the scene:

>>> my_cool_obj.__class__.__bases__
[MyCoolClassExtension1, MyCoolClass]

extend_me library manipulates class creation process via metaclasses, thus in example above, when creating new instance of MyCoolClass we got instance of new class that is subclass of both MyCoolClassExtension and MyCoolClass having functionality of both of them, thanks to Python’s multiple inheritance

For better control over class creation there are few metaclasses defined in this lib:

  • ExtensibleType – allows simple extensibility by subclassing
  • ExtensibleByHashType – similar to ExtensibleType, but haveing ability
    to build specialized versions of class, allowing global extension
    of base class and extension of specialized versions of class

This lib is used in OpenERP Proxy Project, and seems to be working good enough!

For real example of usage, look in OpenERP Proxy ‘field_datetime’ extension:

from ..orm.record import Record
import datetime

class RecordDateTime(Record):
    """ Provides auto conversion of datetime fields from
        string got from server to comparable datetime objects
    """

    def _get_field(self, ftype, name):
        res = super(RecordDateTime, self)._get_field(ftype, name)
        if res and ftype == 'date':
            return datetime.datetime.strptime(res, '%Y-%m-%d').date()
        elif res and ftype == 'datetime':
            return datetime.datetime.strptime(res, '%Y-%m-%d %H:%M:%S')
        return res

Record here is extesible object. RecordDateTime is extension.

To enable extension, just import module that contains extension class, and (in case above) all Record objects created after it will have extension class in base classes, thus having all its functionality.

The main advantage of this library is that, code that operates extensible objects, does not need to know about extension and extensions could change everything in extensible objects.

Method 13

setuptools has an EntryPoint:

Entry points are a simple way for distributions to “advertise” Python
objects (such as functions or classes) for use by other distributions.
Extensible applications and frameworks can search for entry points
with a particular name or group, either from a specific distribution
or from all active distributions on sys.path, and then inspect or load
the advertised objects at will.

AFAIK this package is always available if you use pip or virtualenv.

Method 14

You can use pluginlib.

Plugins are easy to create and can be loaded from other packages, file paths, or entry points.

Create a plugin parent class, defining any required methods:

import pluginlib

@pluginlib.Parent('parser')
class Parser(object):

    @pluginlib.abstractmethod
    def parse(self, string):
        pass

Create a plugin by inheriting a parent class:

import json

class JSON(Parser):
    _alias_ = 'json'

    def parse(self, string):
        return json.loads(string)

Load the plugins:

loader = pluginlib.PluginLoader(modules=['sample_plugins'])
plugins = loader.plugins
parser = plugins.parser.json()
print(parser.parse('{"json": "test"}'))

Method 15

I have spent time reading this thread while I was searching for a plugin framework in Python now and then. I have used some but there were shortcomings with them. Here is what I come up with for your scrutiny in 2017, a interface free, loosely coupled plugin management system: Load me later. Here are tutorials on how to use it.

Method 16

I’ve spent a lot of time trying to find small plugin system for Python, which would fit my needs. But then I just thought, if there is already an inheritance, which is natural and flexible, why not use it.

The only problem with using inheritance for plugins is that you dont know what are the most specific(the lowest on inheritance tree) plugin classes are.

But this could be solved with metaclass, which keeps track of inheritance of base class, and possibly could build class, which inherits from most specific plugins (‘Root extended’ on the figure below)

enter image description here

So I came with a solution by coding such a metaclass:

class PluginBaseMeta(type):
    def __new__(mcls, name, bases, namespace):
        cls = super(PluginBaseMeta, mcls).__new__(mcls, name, bases, namespace)
        if not hasattr(cls, '__pluginextensions__'):  # parent class
            cls.__pluginextensions__ = {cls}  # set reflects lowest plugins
            cls.__pluginroot__ = cls
            cls.__pluginiscachevalid__ = False
        else:  # subclass
            assert not set(namespace) & {'__pluginextensions__',
                                         '__pluginroot__'}     # only in parent
            exts = cls.__pluginextensions__
            exts.difference_update(set(bases))  # remove parents
            exts.add(cls)  # and add current
            cls.__pluginroot__.__pluginiscachevalid__ = False
        return cls

    @property
    def PluginExtended(cls):
        # After PluginExtended creation we'll have only 1 item in set
        # so this is used for caching, mainly not to create same PluginExtended
        if cls.__pluginroot__.__pluginiscachevalid__:
            return next(iter(cls.__pluginextensions__))  # only 1 item in set
        else:
            name = cls.__pluginroot__.__name__ + 'PluginExtended'
            extended = type(name, tuple(cls.__pluginextensions__), {})
            cls.__pluginroot__.__pluginiscachevalid__ = True
return extended

So when you have Root base, made with metaclass, and have tree of plugins which inherit from it, you could automatically get class, which inherits from the most specific plugins by just subclassing:

class RootExtended(RootBase.PluginExtended):
    ... your code here ...

Code base is pretty small (~30 lines of pure code) and as flexible as inheritance allows.

If you’re interested, get involved @ https://github.com/thodnev/pluginlib

Method 17

You may also have a look at Groundwork.

The idea is to build applications around reusable components, called patterns and plugins. Plugins are classes that derive from GwBasePattern.
Here’s a basic example:

from groundwork import App
from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
    def __init__(self, app, **kwargs):
        self.name = "My Plugin"
        super().__init__(app, **kwargs)

    def activate(self): 
        pass

    def deactivate(self):
        pass

my_app = App(plugins=[MyPlugin])       # register plugin
my_app.plugins.activate(["My Plugin"]) # activate it

There are also more advanced patterns to handle e.g. command line interfaces, signaling or shared objects.

Groundwork finds its plugins either by programmatically binding them to an app as shown above or automatically via setuptools. Python packages containing plugins must declare these using a special entry point groundwork.plugin.

Here are the docs.

Disclaimer: I’m one of the authors of Groundwork.

Method 18

In our current healthcare product we have a plugin architecture implemented with interface class. Our tech stack are Django on top of Python for API and Nuxtjs on top of nodejs for frontend.

We have a plugin manager app written for our product which is basically pip and npm package in adherence with Django and Nuxtjs.

For new plugin development(pip and npm) we made plugin manager as dependency.

In Pip package:
With the help of setup.py you can add entrypoint of the plugin to do something with plugin manager(registry, initiations, …etc.)
https://setuptools.readthedocs.io/en/latest/setuptools.html#automatic-script-creation

In npm package:
Similar to pip there are hooks in npm scripts to handle the installation.
https://docs.npmjs.com/misc/scripts

Our usecase:

plugin development team is separate from core devopment team now. The scope of plugin development is for integrating with 3rd party apps which are defined in any of the categories of the product. The plugin interfaces are categorised for eg:- Fax, phone, email …etc plugin manager can be enhanced to new categories.

In your case: Maybe you can have one plugin written and reuse the same for doing stuffs.

If plugin developers has need to use reuse core objects that object can be used by doing a level of abstraction within plugin manager so that any plugins can inherit those methods.

Just sharing how we implemented in our product hope it will give a little idea.


All methods was sourced from stackoverflow.com or stackexchange.com, is licensed under cc by-sa 2.5, cc by-sa 3.0 and cc by-sa 4.0

0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x