selecting from multi-index pandas

I have a multi-index data frame with columns ‘A’ and ‘B’.

Is there is a way to select rows by filtering on one column of the multi-index without resetting the index to a single column index?

For Example.

# has multi-index (A,B)
df
#can I do this? I know this doesn't work because the index is multi-index so I need to     specify a tuple

df.ix[df.A ==1]

Answers:

Thank you for visiting the Q&A section on Magenaut. Please note that all the answers may not help you solve the issue immediately. So please treat them as advisements. If you found the post helpful (or not), leave a comment & I’ll get back to you as soon as possible.

Method 1

One way is to use the get_level_values Index method:

In [11]: df
Out[11]:
     0
A B
1 4  1
2 5  2
3 6  3

In [12]: df.iloc[df.index.get_level_values('A') == 1]
Out[12]:
     0
A B
1 4  1

In 0.13 you’ll be able to use xs with drop_level argument:

df.xs(1, level='A', drop_level=False) # axis=1 if columns

Note: if this were column MultiIndex rather than index, you could use the same technique:

In [21]: df1 = df.T

In [22]: df1.iloc[:, df1.columns.get_level_values('A') == 1]
Out[22]:
A  1
B  4
0  1

Method 2

You can also use query which is very readable in my opinion and straightforward to use:

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [10, 20, 50, 80], 'C': [6, 7, 8, 9]})
df = df.set_index(['A', 'B'])

      C
A B    
1 10  6
2 20  7
3 50  8
4 80  9

For what you had in mind you can now simply do:

df.query('A == 1')

      C
A B    
1 10  6

You can also have more complex queries using and

df.query('A >= 1 and B >= 50')

      C
A B    
3 50  8
4 80  9

and or

df.query('A == 1 or B >= 50')

      C
A B    
1 10  6
3 50  8
4 80  9

You can also query on different index levels, e.g.

df.query('A == 1 or C >= 8')

will return

      C
A B    
1 10  6
3 50  8
4 80  9

If you want to use variables inside your query, you can use @:

b_threshold = 20
c_threshold = 8

df.query('B >= @b_threshold and C <= @c_threshold')

      C
A B    
2 20  7
3 50  8

Method 3

You can use DataFrame.xs():

In [36]: df = DataFrame(np.random.randn(10, 4))

In [37]: df.columns = [np.random.choice(['a', 'b'], size=4).tolist(), np.random.choice(['c', 'd'], size=4)]

In [38]: df.columns.names = ['A', 'B']

In [39]: df
Out[39]:
A      b             a
B      d      d      d      d
0 -1.406  0.548 -0.635  0.576
1 -0.212 -0.583  1.012 -1.377
2  0.951 -0.349 -0.477 -1.230
3  0.451 -0.168  0.949  0.545
4 -0.362 -0.855  1.676 -2.881
5  1.283  1.027  0.085 -1.282
6  0.583 -1.406  0.327 -0.146
7 -0.518 -0.480  0.139  0.851
8 -0.030 -0.630 -1.534  0.534
9  0.246 -1.558 -1.885 -1.543

In [40]: df.xs('a', level='A', axis=1)
Out[40]:
B      d      d
0 -0.635  0.576
1  1.012 -1.377
2 -0.477 -1.230
3  0.949  0.545
4  1.676 -2.881
5  0.085 -1.282
6  0.327 -0.146
7  0.139  0.851
8 -1.534  0.534
9 -1.885 -1.543

If you want to keep the A level (the drop_level keyword argument is only available starting from v0.13.0):

In [42]: df.xs('a', level='A', axis=1, drop_level=False)
Out[42]:
A      a
B      d      d
0 -0.635  0.576
1  1.012 -1.377
2 -0.477 -1.230
3  0.949  0.545
4  1.676 -2.881
5  0.085 -1.282
6  0.327 -0.146
7  0.139  0.851
8 -1.534  0.534
9 -1.885 -1.543

Method 4

Understanding how to access multi-indexed pandas DataFrame can help you with all kinds of task like that.

Copy paste this in your code to generate example:

# hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],
                                   names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],
                                     names=['subject', 'type'])

# mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37

# create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data

Will give you table like this:

enter image description here

Standard access by column

health_data['Bob']
type       HR   Temp
year visit      
2013    1   22.0    38.6
        2   52.0    38.3
2014    1   30.0    38.9
        2   31.0    37.3


health_data['Bob']['HR']
year  visit
2013  1        22.0
      2        52.0
2014  1        30.0
      2        31.0
Name: HR, dtype: float64

# filtering by column/subcolumn - your case:
health_data['Bob']['HR']==22
year  visit
2013  1         True
      2        False
2014  1        False
      2        False

health_data['Bob']['HR'][2013]    
visit
1    22.0
2    52.0
Name: HR, dtype: float64

health_data['Bob']['HR'][2013][1]
22.0

Access by row

health_data.loc[2013]
subject Bob Guido   Sue
type    HR  Temp    HR  Temp    HR  Temp
visit                       
1   22.0    38.6    40.0    38.9    53.0    37.5
2   52.0    38.3    42.0    34.6    30.0    37.7

health_data.loc[2013,1] 
subject  type
Bob      HR      22.0
         Temp    38.6
Guido    HR      40.0
         Temp    38.9
Sue      HR      53.0
         Temp    37.5
Name: (2013, 1), dtype: float64

health_data.loc[2013,1]['Bob']
type
HR      22.0
Temp    38.6
Name: (2013, 1), dtype: float64

health_data.loc[2013,1]['Bob']['HR']
22.0

Slicing multi-index

idx=pd.IndexSlice
health_data.loc[idx[:,1], idx[:,'HR']]
    subject Bob Guido   Sue
type    HR  HR  HR
year    visit           
2013    1   22.0    40.0    53.0
2014    1   30.0    52.0    45.0

Method 5

You can use DataFrame.loc:

>>> df.loc[1]

Example

>>> print(df)
       result
A B C        
1 1 1       6
    2       9
  2 1       8
    2      11
2 1 1       7
    2      10
  2 1       9
    2      12

>>> print(df.loc[1])
     result
B C        
1 1       6
  2       9
2 1       8
  2      11

>>> print(df.loc[2, 1])
   result
C        
1       7
2      10

Method 6

Another option is:

filter1 = df.index.get_level_values('A') == 1
filter2 = df.index.get_level_values('B') == 4

df.iloc[filter1 & filter2]
Out[11]:
     0
A B
1 4  1

Method 7

You can use MultiIndex slicing. For example:

arrays = [["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
          ["one", "two", "one", "two", "one", "two", "one", "two"]]   
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=["A", "B"])
df = pd.DataFrame(np.random.randint(9, size=(8, 2)), index=index, columns=["col1", "col2"])

         col1  col2
A   B              
bar one     0     8
    two     4     8
baz one     6     0
    two     7     3
foo one     6     8
    two     2     6
qux one     7     0
    two     6     4

To select all from A and two from B:

df.loc[(slice(None), 'two'), :]

Output:

         col1  col2
A   B              
bar two     4     8
baz two     7     3
foo two     2     6
qux two     6     4

To select bar and baz from A and two from B:

df.loc[(['bar', 'baz'], 'two'), :]

Output:

         col1  col2
A   B              
bar two     4     8
baz two     7     3


All methods was sourced from stackoverflow.com or stackexchange.com, is licensed under cc by-sa 2.5, cc by-sa 3.0 and cc by-sa 4.0

0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x