TensorFlow: Remember LSTM state for next batch (stateful LSTM)

Given a trained LSTM model I want to perform inference for single timesteps, i.e. seq_length = 1 in the example below. After each timestep the internal LSTM (memory and hidden) states need to be remembered for the next ‘batch’. For the very beginning of the inference the internal LSTM states init_c, init_h are computed given the input. These are then stored in a LSTMStateTuple object which is passed to the LSTM. During training this state is updated every timestep. However for inference I want the state to be saved in between batches, i.e. the initial states only need to be computed at the very beginning and after that the LSTM states should be saved after each ‘batch’ (n=1).